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Introduction

Methods

Intralaminar recordings of LFP: 
Two macaques (BN=7, HN=8) 
Two simultaneous UProbes 

Visual stimulation:
Full screen: 44.7°
White 50ms flash (325.2 cd/m2), 
followed by a 1s black screen 
(0.603 cd/m2)

All results convolved (Gaussian, σ=35ms) for display.
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Behavioral arousal is reflected in a continuum of cortical activity profiles 

that vary between high frequency-dominated desynchronized activity 

and low frequency-dominated  synchronized activity.

Accordingly, one can quantify cortical arousal by determining the 

relationship between high vs. low frequency components of neural 

activity (such as with the clinically relevant bispectral index scale (BIS)1).
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Does the state of arousal affect sensory process ing in 

primary visual cortex?
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What are the mechanisms by which arousal modulates  cortical responses?

To answer this  question, we determined visual responses within the feedback and feedforward layers  of V1.

Wörrgötter et al., 1998

The receptive fields of neurons in feline visual cortex 

are generally wider during states of reduced arousal. 

One model suggest that the shrinkage of receptive 

fields in the desynchronized state is due to lateral 

cortical connections and corticothalamic feedback2.
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EVP magnitude in early visual cortex decreases with heightened arousal

PRI
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CSD modulation with cortical arousal

Laminar pattern of arousal-related EVP modulation 
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EVP magnitude increases as  cortical activity becomes more synchronized.
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State dependent EVP modulation is  most pronounced within the granular and infragranular layers of V1.

The initial current s ink in the granular layers  as  well as  subsequent s inks in the extragranular layers  are of greater 

magnitude when cortical activity is  in a low-frequency dominated (synchronized) activity state.
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State dependent modulation of spiking responses

increases with cortical depth.

Our results suggest the following:

• Increased cortical arousal correlates with decreased

visual responses in primary visual cortex.

• This state-dependent modulation of neural responses 

is most prominent in the deep (infragranular) layers

• The initial thalamocortical input is already affected by 

the state of cortical arousal

Cortical arousal is promoted and maintained by a widespread system 

that involves the reticular formation, aminergic nuclei, non-specific 

nuclei of the thalamus, the hypothalamus and the basal forebrain5.

The transition between desynchronized to synchronized states of 

cortical activity has been shown to affect visual processing as early as 

primary visual cortex2,6. However, if and how it affects the laminar 

microcircuitry is an open question7.
Harris K & Thiele A, 2011
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We devised a novel index for quantifying cortical arousal that allows for classification.
LFP is filtered into to low (5-10Hz) and high (30-100Hz) frequency components. Each 

band is rectified, convolved and normalized. Then a power ratio index is computed as:
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